Every Decker book is accompanied by a CD-ROM.

BC Decker Inc is committed to providing high-quality electronic publications that complement traditional information and learning methods.

Physiologic Basis of Respiratory Disease is accompanied by a dual-platform CD-ROM, which features the complete text and full-color images. The fully searchable PDF files facilitate the exploration of need-to-know information. The disc is also ideal for printing pertinent information necessary for patient education.

The book and disc are sold only as a package; neither are available independently, and no prices are available for the items individually. We trust you will find the book/CD package invaluable and invite your comments and suggestions.

Access information. Acquire knowledge. Please visit www.bcdecker.com for a complete list of titles in your discipline. Our innovative approach to meeting the informational needs of healthcare professionals ensures that Decker products belong in your library and on your computer.

Brian C. Decker
CEO and Publisher
PHYSIOLOGIC BASIS OF
RESPIRATORY DISEASE

Qutayba Hamid, MD, PhD, MRCP, FRCPa
Professor of Medicine
Department of Medicine
McGill University
Montreal, Quebec

Joanne Shannon, MD
Postdoctoral Fellow
Meakins-Christie Laboratories
McGill University
Montreal, Quebec

James Martin, MD, DSc
Professor of Medicine
Department of Medicine
McGill University
Montreal, Quebec
Notice: The authors and publisher have made every effort to ensure that the patient care recommended herein, including choice of drugs and drug dosages, is in accord with the accepted standard and practice at the time of publication. However, since research and regulation constantly change clinical standards, the reader is urged to check the product information sheet included in the package of each drug, which includes recommended doses, warnings, and contraindications. This is particularly important with new or infrequently used drugs. Any treatment regimen, particularly one involving medication, involves inherent risk that must be weighed on a case-by-case basis against the benefits anticipated. The reader is cautioned that the purpose of this book is to inform and enlighten; the information contained herein is not intended as, and should not be employed as, a substitute for individual diagnosis and treatment.
CONTENTS

FOREWORD vii
PREFACE ix
CONTRIBUTORS xi
HISTORY OF THE MEAKINS-CHRISTIE LABORATORIES xvii

SECTION I
ANATOMY

1 HISTOLOGY AND GROSS ANATOMY OF THE RESPIRATORY TRACT, 1
Richard S. Fraser

SECTION II
MECHANICS OF BREATHING

2 STATICS OF THE RESPIRATORY SYSTEM, 15
Edgardo D'Angelo, Joseph Milic-Emili

3 STATICS OF THE LUNG, 27
Joseph Milic-Emili, Edgardo D'Angelo

4 ACT OF BREATHING: DYNAMICS, 35
Peter T. Macklem

5 RESPIRATORY MECHANICS IN INFANTS AND CHILDREN, 49
Peter D. Sly, Felicity S. Flack, Zoltán Hantos

6 PHYSICS OF EXPIRATORY FLOW LIMITATION, 55
Jason H.T. Bates

7 ACT OF BREATHING: THE VENTILATORY PUMP, 61
Peter T. Macklem

8 PULMONARY STATICS IN DISEASE, 69
Paolo Carbonara, David H. Eidelman

9 STRUCTURE–FUNCTION CORRELATIONS IN PULMONARY FIBROSIS, 77
Anne Gonzalez, Mara S. Ludwig

10 STRUCTURE–FUNCTION RELATIONSHIPS IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 85
Manuel G. Cosio, Marina Saetta, Heberto Ghezzo, Simonetta Baraldo

11 STRUCTURE–FUNCTION CORRELATIONS IN ASTHMA, 105
Mara Ludwig

12 STRUCTURE–FUNCTION RELATIONSHIPS IN AIRWAY DISEASE: ANALYSIS BY COMPUTED TOMOGRAPHIC IMAGING, 115
Michiaki Mishima

13 BREATHING STRATEGIES IN ASTHMA AND CHRONIC OBSTRUCTIVE LUNG DISEASE, 123
James G. Martin

SECTION III
VENTILATION, PULMONARY CIRCULATION AND GAS EXCHANGE

14 VENTILATION DISTRIBUTION, 133
Joseph Milic-Emili

15 GAS CONVECTION AND DIFFUSION, 143
Manuel Paiva, Sylvia Verbanck

16 LUNG VASCULATURE: FUNCTIONAL INFERENCE FROM MICROSTRUCTURE, 155
Dean E. Schraufnagel

17 VENTILATION–PERFUSION RELATIONSHIPS, 165
Peter D. Wagner

18 VENTILATION-PERFUSION DISTRIBUTIONS IN DISEASE, 185
Antoni Ferrer, Robert Rodriguez-Roisin

19 PULMONARY EDEMA, 203
René P. Michel, Peter Goldberg

20 OXYGEN REGULATION OF VASOMOTOR TONE, 237
David Hall, Duncan Stewart, Michael Ward

SECTION IV
RESPIRATORY MUSCLES AND CONTROL OF BREATHING

21 NEURAL CONTROL OF BREATHING, 251
Immanuela Ravé Moss

22 ACTIONS OF THE RESPIRATORY MUSCLES, 263
André de Troyer

23 BIOLOGY OF THE RESPIRATORY MUSCLES, 277
Ghislaine Gayan-Ramirez, Marc Decramer

24 RESPIRATORY MUSCLE FATIGUE, 289
Spyros Zakhynthinos, Charis Roussos

25 VENTILATORY MUSCLE INJURY, 309
Xiangyu Wang, Tian-Xi Jiang, W Darlene Reid, Jeremy Road

26 RESPIRATORY CONSEQUENCES OF NEUROMUSCULAR DISEASE, 319
Stefan Matecki, Basil J. Petrof
SECTION V
AIRWAYS AND LUNG DEFENSE

29 GENETICS OF RESPIRATORY DISEASE, 349
Scott J. Tebbutt, Andrew J. Sandford, Peter D. Paré

30 NEUROHUMORAL CONTROL OF THE AIRWAYS, 363
Marie-Claire Michoud

31 MECHANICS OF AIRWAY NARROWING, 371
Peter D. Paré, Peter T. Macklem, Chan Y. Seow, Brent E. McParland

32 AIRWAY SMOOTH MUSCLE: THE CONTRACTILE PHENOTYPE, 381
Elizabeth D. Fixman, Barbara Tolloczko, Anne-Marie Lauzon

33 CYTOKINES AND AIRWAY SMOOTH MUSCLE, 389
Stephanie A. Shore

34 IMMUNOGLOBULINS AND THE LUNG, 399
Salem al-Tamemi, Bruce Mazer

35 MUCUS AND ITS ROLE IN AIRWAY CLEARANCE AND CYTOPROTECTION, 409
Malcolm King

36 MUCOCILIARY CLEARANCE AND CYSTIC FIBROSIS, 417
Mark R. Elkins, Peter T.P. Bye

37 FLUID AND ELECTROLYTE TRANSPORT IN THE AIRWAYS, 429
John W. Hanrahan

38 EPITHELIAL FUNCTION IN LUNG INJURY, 439
Yves Berthiaume

39 CYTOKINES AND CHEMOKINES IN ASTHMA: AN OVERVIEW, 453
Meri K. Tulic, Pierre-Olivier Fiset, Zoe Müller, Qutayba Hamid

40 NITRIC OXIDE AND THE LUNG, 469
Jennifer S. Landry, David H. Eidelman

41 VIRAL INFECTIONS AND AIRWAY RESPONSIVENESS, 479
Paolo Renzi

42 ROLES OF LIPID MEDIATORS IN ACUTE LUNG INJURY AND PULMONARY FIBROSIS, 489
Takahide Nagase

43 EICOSANOIDs AND THE LUNG, 495
William S. Powell

44 LUNG TRANSPLANTATION, 509
Tom Kotsimbos

SECTION VI
EXERCISE PHYSIOLOGY

45 PHYSIOLOGIC RESPONSES TO EXERCISE, 525
Hans C. Haverkamp, Jerome A. Dempsey, Jordan D. Miller, Lee M. Romer, Marlowe W. Eldridge

46 VENTILATORY FACTORS IN EXERCISE PERFORMANCE IN PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 541
Carmen Lisboa, Orlando Diaz, Gisella Borzone

47 PRACTICAL ASSESSMENT OF EXERCISE LIMITATION, 547
Nicholas C. Duffy, Peter M.A. Calverley

48 REGULATION OF SKELETAL BLOOD FLOW DURING EXERCISE, 555
Sabah N.A. Hussain, Alain S. Comtois

49 PERIPHERAL MUSCLE DYSFUNCTION IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 567
Richard Debigare, François Maltais

SECTION VII
SLEEP DISORDERED BREATHING

50 PHYSIOLOGY OF THE UPPER AIRWAYS AND UPPER AIRWAY OBSTRUCTION IN DISEASE, 581
R. John Kimoff

51 CARDIOVASCULAR CONSEQUENCES OF SLEEP-DISORDERED BREATHING, 597
Steven R. Coughlin, Peter M.A. Calverley

SECTION VIII
CLINICAL RESPIRATORY PHYSIOLOGY

52 COMPLEXITY AND RESPIRATION: A MATTER OF LIFE AND DEATH, 605
Peter T. Macklem

53 SEX AND GENDER DIFFERENCES IN AIRWAY BEHAVIOR ACROSS THE HUMAN LIFE SPAN, 611
Margaret R. Becklake, Joanne Shannon

54 MEASUREMENT TECHNIQUES IN RESPIRATORY MECHANICS, 623
Jason H.T. Bates

55 ESOPHAGEAL PRESSURE MEASUREMENT, 639
Walter Araujo Zin, Joseph Milic-Emili
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>GUIDE TO THE EVALUATION OF PULMONARY FUNCTION, 649</td>
<td>Charles G. Irvin</td>
</tr>
<tr>
<td>57</td>
<td>SINGLE-BREATH CARBON MONOXIDE DIFFUSING CAPACITY OR TRANSFER FACTOR, 659</td>
<td>David J. Cotton, Brian L. Graham</td>
</tr>
<tr>
<td>58</td>
<td>SPIROMETRIC PREDICTIONS OF EXERCISE LIMITATION IN PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 671</td>
<td>Joseph Milic-Emili, Nicholas G. Koulouris, Claudio Tantucci</td>
</tr>
<tr>
<td>59</td>
<td>DETERMINANTS OF DECLINE IN LUNG FUNCTION, 681</td>
<td>Nicholas R. Anthonisen, Jure Manfreda</td>
</tr>
<tr>
<td>60</td>
<td>ASSESSMENT OF RESPIRATORY MUSCLES, 689</td>
<td>Guy Czaika, Alejandro Grassino</td>
</tr>
<tr>
<td>61</td>
<td>ASSESSMENT OF ACID–BASE BALANCE: A PHYSICAL–CHEMICAL APPROACH, 699</td>
<td>Sheldon Magder</td>
</tr>
<tr>
<td>62</td>
<td>AIRWAY HYPERRESPONSIVENESS, 709</td>
<td>Ron Olivenstein, Rame Taha</td>
</tr>
<tr>
<td>63</td>
<td>ASSESSMENT OF FORCED EXPIRATORY FLOWS IN INFANTS, 721</td>
<td>Robert S. Tepper, Debra Turner</td>
</tr>
<tr>
<td>64</td>
<td>EVALUATION OF THE PATIENT WITH OCCUPATIONAL ASTHMA, 727</td>
<td>Catherine Lemière</td>
</tr>
<tr>
<td>65</td>
<td>PHYSIOLOGIC BASIS FOR PULMONARY REHABILITATION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 733</td>
<td>Jean Bourbeau, Hélène Perrault</td>
</tr>
<tr>
<td>66</td>
<td>LUNG VOLUME REDUCTION SURGERY, 745</td>
<td>Koji Chihara</td>
</tr>
<tr>
<td>67</td>
<td>DIAPHRAGM RESPONSES TO STIMULATION, 755</td>
<td>François Bellemare, Claude Poirier</td>
</tr>
<tr>
<td>68</td>
<td>AN INTRODUCTION TO LUNG MORPHOMETRY, 769</td>
<td>R. Heberto Ghezzo</td>
</tr>
</tbody>
</table>

INDEX 777
Physiology has played a crucial role in our understanding of common respiratory diseases, particularly asthma and chronic obstructive pulmonary disease. The Meakins-Christie Laboratories have been at the forefront of this understanding since 1972. This book brings together an extraordinary range of contributions to this field by past and present members of this internationally renowned organization. The historical origins of the Meakins-Christie Laboratories are beautifully described by Peter Macklem, who has done so much to establish a world-class research center. The range of technologies encompassed by the various contributors is quite astounding, indicating how much physiology relates to other scientific approaches to understanding the complexities of lung disease. It is this multidisciplinary approach to lung diseases that has proved to be so successful in elucidating the complex mechanisms involved in many pulmonary diseases and which has been pioneered by the Meakins-Christie Laboratories.

The Meakins-Christie Laboratories have led the way in many areas of research into pulmonary diseases. Linking pathology to function seems so obviously important now. It was pioneered by investigators at Meakins-Christie Laboratories, such as William “Whitey” Thurlbeck, and this tradition has been admirably developed and advanced by Jim Hogg and Manuel Cosio. Respiratory epidemiology, and its strong presence at the Laboratories, can trace its origins to the pioneering work of Margaret Becklake. But it is in “hard” physiology where the Meakins-Christie Laboratories have excelled and led the world. This book brings together the contributions of many of the international leaders in respiratory physiology. Not surprisingly, many of them were trained at the Meakins-Christie Laboratories. As such, this book covers a vast range of aspects of respiratory physiology: mechanics, ventilation, gas exchange, respiratory muscles, control of breathing, sleep-disordered breathing, and exercise physiology, as well as the clinical applications of respiratory physiology. The fact that all of the authors are present or past members of the Meakins-Christie Laboratories gives the book an extraordinary coherence; Qutayba Hamid, Joanne Shannon, and Jim Martin have done a superb job in bringing together all this expertise in such a well-ordered manner.

In recent years there has been less emphasis on physiology, as funding has largely switched to cell and molecular biology, with the result that many physiology departments have downsized or even closed. Cloning of the human genome was rightly hailed as a great step forward in science, but only now is it recognized that identifying genes is only a small step toward understanding complex diseases. Interest is swinging back toward physiology, as the field integrates advances in cell and molecular biology with functional changes in whole organisms. It is recognized that physiology is of vital importance in making sense of all the advances in basic science, and the field is now re-emerging as functional genomics and systems biology. The Meakins-Christie Laboratories have always maintained an interest in cell and molecular biology, which is reflected in many chapters of this book, and this institution has been among the first to integrate this into whole animal physiology and its clinical application. This institution has kept the flag of physiology alive, while many other scientific institutions have sacrificed physiology to follow scientific fashion, now to their great regret!

This book covers the whole range of respiratory physiology, from relevant basic cell physiology to human respiratory physiology, and includes the important applications of physiology in clinical practice. I cannot think of any other institution in the world whose own associates could cover this topic so comprehensively and effectively. This volume will be of enormous value to all academic respiratory physicians as well as those involved in all aspects of research into pulmonary medicine. I have always been impressed on my visits to the Meakins-Christie Laboratories by the active discussion and interaction taking place between the different research groups—a perfect environment for research. The Meakins-Christie Laboratories have trained scientists from all over the world who have themselves become international leaders, and this is well reflected in the authorship of the chapters. Sadly, some of the prominent acolytes, including Ann Woolcock, Ludwig Engel, and David Flenley, are no longer with us, but the spirit of the Meakins-Christie Laboratories is alive and well. The Meakins-Christie Laboratories have played a major international role in pulmonary research under the leadership of Peter Macklem, Joseph Milic-Emili, and now Jim Martin. This book is an excellent summary of all of these achievements and illustrates how the Meakins-Christie Laboratories have maintained their position at the cutting edge of respiratory science.
The research interests of the Meakins-Christie Laboratories have evolved from the excellence in respiratory physiology at McGill University initiated by Dr. Ronald Christie many years ago. Its legacy of excellence has been upheld by physiologists such as David Bates, Margaret Becklake, Peter Macklem, and Joseph Milic-Emili. The research performed in the Meakins-Christie Laboratories has always been motivated by its potential clinical relevance. Attempts to develop tests to identify early peripheral airway disease in smokers and the evaluation of the contribution of the respiratory muscles to ventilatory failure are but two examples of the enthusiasm for patient-related issues.

In recent years remarkable strides have been made in exploring the cellular and molecular physiology of the lungs and the respiratory skeletal muscles, and the mechanisms underlying respiratory disease have been greatly clarified. The elucidation of the pathobiologic basis for disease has not replaced the need to understand “classical respiratory physiology.” The respiratory physician still requires a familiarity with the fundamental mechanisms of abnormal gas exchange and altered respiratory system mechanics in common diseases such as asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. The cardinal symptoms of these diseases are largely attributable to gas exchange and respiratory system mechanics.

The muscles of the respiratory pump, a term coined by Macklem, Roussos, and coworkers, are affected by altered geometry of the respiratory system such that their pressure-generating capacities are compromised. Whether true muscle fatigue occurs is still uncertain, but it has been a logical approach to provide rehabilitation with a view to improving respiratory muscle function. However, attempts to rehabilitate patients with advanced obstructive lung disease have been confounded by skeletal muscle deconditioning and dysfunction, revealing unsuspected systemic effects of COPD on both respiratory and peripheral skeletal muscle. Understanding skeletal muscle biology has therefore become a necessity for the respiratory physician.

In this book we have attempted to address most of the currently clinically relevant pulmonary physiology and pathophysiology that the respiratory physician should be familiar with. We have not attempted to be encyclopedic in our approach, and one may argue that the book is not even-handed in its treatment of the subject. The book has inevitable biases resulting from the fact that the authors are, for the most part, former fellows of the Meakins-Christie Laboratories or have been closely associated with the Laboratories. We believe that this bias does not detract from the intrinsic clinical pertinence of the contents.

We gratefully acknowledge the generosity of our colleagues for their contributions to this book. We wish also to acknowledge the patience and encouragement provided by the staff of BC Decker Inc. We hope that the reader will enjoy the read as we have enjoyed the process of creating this book and renewing our association with our fellow Meakins-Christie Laboratories alumni and other colleagues dedicated to respiratory physiology.

Q. Hamid
J. Shannon
J.G. Martin
CONTRIBUTORS

Nicholas R. Anthonisen, MD, PhD, FRCP
Professor Emeritus
Department of Internal Medicine
University of Manitoba
Winnipeg, Manitoba

Walter Araujo Zin, MD, PhD
Professor of Physiology
Carlos Chagas Filho Institute of Biophysics
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

Michel Aubier, MD
Professor of Pneumology
Department of Pneumology
Faculté Xavier Bichat. Université Paris 7
Paris, France

Simonetta Baraldo, PhD
Postdoctoral Fellow
Cardiothoracic and Vascular Sciences
University of Padua
Padua, Italy

Jason H. T. Bates, PhD, DSc
Professor of Medicine
Vermont Lung Center
University of Vermont
Burlington, Vermont

Margaret Becklake, MB, BCh, MD, FRCP(E)
Professor of Medicine
Departments of Medicine and Epidemiology,
Biostatistics and Occupational Health
McGill University
Montreal, Quebec

François Bellemare, PhD
Research Associate
Department of Pneumology
Sleep Laboratory Hôtel Dieu of CHUM
Montreal, Quebec

Yves Berthiaume, MD
Professeur Titulaire
Département de Médecine
Université de Montréal
Montreal, Quebec

Jorge Boczkowski, MD, PhD
Principal Investigator
U700
INSERM
Paris, France

Gisella Borzone, MD
Associate Professor
Pontificia Universidad Catolica de Chile
Santiago, Chile

Jean Bourbeau, MD
Assistant Professor of Medicine
Department of Medicine
McGill University
Montreal, Quebec

Peter T. P. Bye, MBBS, FRACP, PhD
Clinical Associate Professor
Department of Medicine
University of Sydney
Sydney, New South Wales

Peter M. A. Calverley, MB, ChB, FRCP, FRCP(E)
Professor of Medicine
University of Liverpool
Liverpool, United Kingdom

Paolo Carbonara, MD
Research Fellow
Meakins-Christie Laboratories
McGill University
Montreal, Quebec

Koji Chihara, MD, PhD
Chief of Thoracic Surgery
Shizuoka City Shizuoka Hospital
Shizuoka, Japan

Alain S. Comtois, PhD
Associate Professor
Kinanthropologie
Université du Quebec a Montreal
Montreal, Quebec

Manuel G. Cosio, MD
Professor of Medicine
Respiratory Division
McGill University
Montreal, Quebec

David J. Cotton, MD, FRCP(C)
Professor of Medicine
Department of Internal Medicine
College of Medicine University of Saskatchewan
Saskatoon, Saskatchewan
Contributors

Steven Robert Couglin, MSc, PhD
Research Fellow
Department of Medicine
University of Liverpool
Liverpool, United Kingdom

Guy Czaika, PhD
University of Montreal
Montreal, Quebec

Edgardo D’Angelo, MD
Professor of Human Physiology
Istituto di Fisiologia Umana I
Università degli Studi di Milano
Milan, Italy

Richard Debigré, PT, PhD
Assistant Professor
Department of Medicine
Université Laval
Montreal, Quebec

Marc Decramer, MD, PhD
Professor of Medicine
Department of Pneumology
Katholieke Universiteit Leuven
Leuven, Belgium

Jerome A. Dempsey, PhD
Professor of Medicine
Department of Population Health Sciences
University of Wisconsin-Madison
Madison, Wisconsin

Orlando Díaz, MD
Associate Professor
Pontificia Universidad catolica de Chile
Santiago, Chile

Nicholas C. Duffy, MBChB, MRCP
Lecturer
Department of Medicine
University of Liverpool
Liverpool, United Kingdom

David H. Eidelman
Professor of Medicine
Respiratory Division
McGill University
Montreal, Quebec

Marlowe W. Eldridge, MD
Assistant Professor of Medicine
Population Health Sciences
University of Wisconsin-Madison
Madison, Wisconsin

Mark R. Elkins, MHSci
Honorary Associate
School of Physiotherapy
University of Sydney
Sydney, New South Wales

Antoni Ferrer, MD
Senior Associate Physician
Servei de Pneumologia
Hospital de Sabadell Institut
Institut Universitari Corporació Parc Taulí
Universitat Autònoma de Barcelona
Barcelona, Spain

Pierre-Olivier Fiset
Department of Medicine
McGill University
Montreal, Quebec

Elizabeth D. Fixman, PhD
Assistant Professor
Department of Medicine
McGill University
Montreal, Quebec

Felicity S. Flack, PhD
Division of Clinical Sciences
Telethon Institute for Child Health Research
University of Western Australia
Perth, Western Australia

Richard Fraser, MDCM, FRCP(C)
Professor of Pathology
Department of Pathology
McGill University
Montreal, Quebec

Ghislaine Gayan-Ramirez, PhD
Department of Pneumology
Katholieke Universiteit Leuven
Leuven, Belgium

R. Heberto Ghezzo, PhD, FRSS
Research Associate
Department of Medicine
McGill University
Montreal, Quebec

Peter Goldberg, MDCM
Associate Professor of Medicine
Respiratory Medicine
McGill University
Montreal, Quebec

Anne Gonzalez, MD
Meakins-Christie Laboratories
McGill University
Montreal, Quebec
Rik Gooselink, PT, PhD
Professor of Medicine
Katholieke Universiteit Leuven
Leuven, Belgium

Brian L. Graham, PhD
Professor of Medicine
Department of Medicine
College of Medicine University of Saskatchewan
Saskatoon, Saskatchewan

Alejandro Grassino, MD
Professor of Medicine
Department of Medicine
University of Montreal
Montreal, Quebec

David A. Hall, PhD, MD
Respiratory and Clinical Care Fellow
Department of Respiratory and Critical Care Medicine
University of Toronto
Toronto, Ontario

Qutayba Hamid, MD, PhD, MRCP, FRCPath
Professor of Medicine
Department of Medicine
McGill University
Montreal, Quebec

John W. Hanrahan, PhD
Professor of Physiology
Department of Physiology
McGill University
Montreal, Quebec

Zoltán Hantos, MSc, PhD, CSc, DSc
Professor of Medicine
Medical Informatics
Albert Szent-Gyorgyi Medical University
Szeged, Hungary

Hans C. Haverkamp, MS
Predoctoral Fellow
Population Health Sciences
University of Wisconsin-Madison
Madison, Wisconsin

Sabah N. A. Hussain, MD, PhD
James McGill Professor
Department of Medicine
McGill University
Montreal, Quebec

Charles G. Irvin, PhD
Professor and Director
Vermont Lung Center
University of Vermont
Burlington, Vermont

Tian-Xi Jiang, MD
Research Associate
Department of Medicine
University of British Columbia
Vancouver, British Columbia

R. John Kimoff, MD, FRCP(C)
Associate Professor
Department of Medicine
McGill University
Montreal, Quebec

Malcolm King, PhD, FCCP
Professor of Medicine
Department of Medicine
University of Alberta
Edmonton, Alberta

Tom Kotsimbos, MD, FRACP
Associate Professor
Department of Medicine
Monash University
Melbourne, Victoria

Nickolaos G. Koulouris, MD, PhD
Associate Professor in Respiratory Medicine
Department of Respiratory Medicine
University of Athens
Athens, Greece

Jennifer S. Landry, MD, FRCP(C)
Assistant Professor
Department of Medicine
McGill University
Montreal, Quebec

Sophie Lanone, PhD
U700
INSERM
Paris, France

Anne-Marie Lauzon, PhD
Assistant Professor
Department of Medicine
McGill University
Montreal, Quebec

Catherine Lemière, MD, MSc
Associate Professor
Department of Medicine
University of Montreal
Montreal, Quebec

Carmen Lisboa, MD
Professor of Medicine
Pontificia Universidad catolica de Chile
Santiago, Chile
Contributors

Mara S. Ludwig, MD
Professor of Medicine
Meakins-Christie Laboratories
McGill University
Montreal, Quebec

Peter T. Macklem, MD, CM, FRCP(C), FRSC
Professor Emeritus
Department of Medicine
McGill University
Montreal, Quebec

Sheldon Magder, MD, FRCP(C)
Professor of Medicine and Physiology
Department of Medicine and Physiology
McGill University
Montreal, Quebec

François Maltais, MD
Associate Professor of Medicine
Department of Medicine
Université Laval
Montreal, Quebec

Jure Manfreda, MD
Associate Professor
Internal Medicine
University of Manitoba
Winnipeg, Manitoba

James G. Martin, MD, DSc
Professor of Medicine
Department of Medicine
McGill University
Montreal, Quebec

Stefan Matecki, MD, PhD
Fellow
Meakins-Christie Laboratories
McGill University
Montreal, Quebec

Bruce Mazer, MD
Associate Professor of Pediatrics
Department of Pediatrics
McGill University
Montreal, Quebec

Brent E. McParland, MSc, PhD
Postdoctoral Fellow
Department of Medicine
University of British Columbia
Vancouver, British Columbia

René P. Michel, MD, CM, FRCP(C)
Professor of Pathology
Department of Pathology
McGill University
Montreal, Quebec

Marie-Claire Michoud, MSc, PhD
Research Associate
Department of Medicine
McGill University
Montreal, Quebec

Joseph Milic-Emili, CM, MD, FRSC
Professor Emeritus
Department of Physiology
McGill University
Montreal, Quebec

Jordan D. Miller, MS
Predoctoral Fellow
Population Health Sciences
University of Wisconsin-Madison
Madison, Wisconsin

Michiaki Mishima, MD, PhD
Professor and Chairman
Respiratory Medicine
Postgraduate School of Medicine, Kyoto University
Kyoto, Japan

Zöe Müller
Research Assistant
Department of Medicine
McGill University
Montreal, Quebec

Takahide Nagase, MD
Professor of Medicine
Department of Respiratory Medicine
University of Tokyo, The Graduate School of Medicine
Tokyo, Japan

Ronald Olivenstein, MD, FRCP(C)
Assistant Professor of Medicine
Department of Medicine
McGill University
Montreal, Quebec

Manuel Paiva, PhD
Professor of Medicine
Laboratoire de Physique Biomédical
Université Libre de Bruxelles
Brussels, Belgium

Peter Paré, MD, FRCPC
Professor of Medicine
Department of Medicine
University of British Columbia
Vancouver, British Columbia

Hélène Perrault, PhD
Professor and Chair
Kinesiology and Physical Education
McGill University
Montreal, Quebec
Basil J. Petrof, MD, FRCP(C)
Associate Professor
Department of Medicine
McGill University
Montreal, Quebec

Claude Poirier, MD, FRCP(C)
Chargé d'enseignement
University of Montreal
Montreal, Quebec

William S. Powell, PhD
Professor of Medicine
Department of Medicine
McGill University
Montreal, Quebec

Immanuela Ravé Moss, MD, PhD, FAAP
Professor of Medicine
Departments of Pediatrics and Physiology
McGill University
Montreal, Quebec

W. Darlene Reid, BMR(PT), PhD
Associate Professor
School of Rehabilitation Sciences
University of British Columbia
Vancouver, British Columbia

Paolo Renzi, MD, FCCP, FRCP(C)
Professor of Research
Department of Medicine
University of Montreal
Montreal, Quebec

Jeremy Road, MD, FRCPC
Professor of Medicine
Department of Medicine
University of British Columbia
Vancouver, British Columbia

Robert Rodriguez-Roisin, MD, FRCP(E)
Professor of Medicine
Departament de Medicine
Universitat de Barcelona
Barcelona, Spain

Lee M. Romer, PhD
Lecturer
Sport Sciences
Brunel University
Uxbridge, Middlesex

Charis Roussos, MD, PhD
Professor of Intensive Care Medicine
Critical Care and Pulmonary Services
University of Athens Medical School
Athens, Greece

Marina Saetta, MD
Professor of Medicine
Department of Cardiothoracic and Vascular Sciences
University of Padua
Padua, Italy

Andrew Sanford, PhD
Associate Professor of Medicine
Department of Medicine
University of British Columbia
Vancouver, British Columbia

Dean E. Schraufnagel, MD, FCCP
Professor of Medicine
Division of Pulmonary, Critical Care and Sleep Medicine
University of Illinois at Chicago
Chicago, Illinois

Chun Y. Seow, PhD
Associate Professor
Pathology/Laboratory Medicine
University of British Columbia
Vancouver, British Columbia

Joanne Shannon, MD
Postdoctoral Fellow
Meakins-Christie Laboratories
McGill University
Montreal, Quebec

Stephanie A. Shore, PhD
Senior Lecturer in Physiology
Department of Environmental Health
Harvard School of Public Health
Boston, Massachusetts

Peter D. Sly, MD, DSc, FRACP
Professor of Medicine
Centre for Child Health Research
University of Western Australia
Perth, Western Australia

Duncan Stewart, MDCM, FRCP, FACC, FAHA
Professor of Medicine
Department of Cardiology
University of Toronto
Toronto, Ontario

Rame Taha, MD
Research Scientist
Department of Anesthesia
University of Montreal
Montreal, Quebec

Camille Taillé
Research Fellow
U700
INSERM
Paris, France
Salem al-Tamemi, MD, FRCP(C)
Clinical and Research Fellow
Department of Clinical Immunology
McGill University
Montreal, Quebec

Claudio Tantucci, MD
Professor of Respiratory Medicine
Scienze Mediche e Chirurgiche
University of Brescia
Brescia, Italy

Scott James Tebbutt, PhD
Clinical Assistant Professor
Department of Medicine
University of British Columbia
Vancouver, British Columbia

Robert S. Tepper, MD, PhD
Professor of Pediatrics
Department of Pediatrics
Indiana University
Indianapolis, Indiana

Barbara Tolloczko, PhD
Research Associate
Department of Medicine
McGill University
Montreal, Quebec

Thierry Troosters, PT, PhD
Professor of Pulmonary Rehabilitation
Department of Rehabilitation Sciences
Katholieke Universiteit Leuveneu
Leuven, Belgium

André de Troyer, MD, PhD
Professor of Physiology
Department of Cardiorespiratory Physiology
Brussels School of Medicine
Brussels, Belgium

Meri K. Tulic, PhD
Research Fellow
Meakins-Christie Laboratories
McGill University
Montreal, Quebec

Debra Turner, PhD
Adjunt Senior Lecturer
Telethon Institute for Child Health Research
University of Western Australia
Perth, West Australia

Sylvia Verbanck, PhD
Respiratory Division
Vrye Universiteit Brussel
Brussels, Belgium

Peter D. Wagner, MD
Professor of Medicine and Bioengineering
Division of Physiology
University of California San Diego
La Jolla, California

Xiangyu Wang, MD
Postdoctoral Fellow
School of Rehabilitation Sciences
University of British Columbia
Vancouver, British Columbia

Michael Ward, PhD, MD, FRCP(C)
Associate Professor of Medicine
Department of Medicine
University of Toronto
Toronto, Ontario

Spyros Zakynthinos, MD
Associate Professor of Intensive Care Medicine
Critical Care and Pulmonary Services
University of Athens Medical School
Athens, Greece
The first quarter of the twentieth century marks the beginning of the history of the Meakins-Christie Laboratories for Respiratory Research. Shortly before his death in 1919, Sir William Osler, then Regius Professor of Medicine at Oxford University, the world’s most renowned physician and McGill University’s most distinguished graduate, wrote to the dean of the faculty of medicine recommending that McGill appoint a full-time chairman of the Department of Medicine who would establish research in the hospital as an essential part of academic medical activities. Until that time the teachers at McGill’s medical school were all part-time physicians who had private practices outside the teaching hospitals.

It took the dean some time to act on Sir William’s recommendation, but in 1924 Dr. Jonathan Meakins arrived from the University of Edinburgh to take up his appointment as physician-in-chief of the Royal Victoria Hospital (RVH) and the first full-time chairman of medicine in Canada. Dr. Meakins more than fulfilled his mandate to establish clinical research at the RVH. He wrested control of clinical laboratory services away from the Department of Pathology, so the clinical biochemistry and hematology laboratories became part of the Department of Medicine and provided the department with an extremely valuable research infrastructure. This extraordinary accomplishment made the RVH almost unique in the world. Traditionally, clinical laboratory services are supplied by clinical pathologists, but at the RVH they are supplied by internists. Although this organizational structure has frustrated hospital administrators, it is directly responsible for the tradition of hospital-based clinical research that has made the RVH such a renowned academic institution. Meakins’ efforts to develop research in the RVH did not stop at biochemistry and hematology. In the early 1930s he recruited Ronald Christie for a postdoctoral fellowship at the RVH. Together they published a series of classic papers dealing with the mechanics of breathing in emphysema and mitral stenosis and with blood gas abnormalities in pulmonary edema.1–3

After 7 years in Montreal, Christie returned to England to take up an academic position at St. Bartholomew’s Hospital Medical School, where he rose to the rank of professor and chairman. In the meantime, the Department of Medicine at the RVH had fallen into disarray with the appointment of one individual as physician-in-chief and another as departmental chairman. These two individuals did not see eye-to-eye on any issue, and the department was tainted by acrimony. An interim departmental head was chosen, while a search committee was established by the hospital’s board of directors to find a permanent solution. The solution turned out to be Ronald Christie.

Christie had visited McGill at the request of the search committee and had been offered the job. He returned to London confident that the offer would be withdrawn because of the almost impossible conditions he had put on his acceptance, including a whole new wing for the Department of Medicine to match the one recently built for the Department of Surgery. He was therefore surprised to see Mr. David Muir, president of the Bank of Montreal and chairman of the RVH board, waiting outside his office in London one day. All of his conditions had been agreed to, and Christie accepted the job.

Ronald Christie returned to Montreal as physician-in-chief of the RVH and chairman of the McGill Department of Medicine in 1955, when I was a final year medical student. Shortly after he arrived, he gave a professional lecture to the faculty. Not many people can recall the details of a lecture delivered 50 years previously, but I remember Christie’s well.
He talked about lung compliance and resistance and how the two combined made up the work of ventilating the lung. He showed how these parameters changed systematically with changes in tidal volume and breathing frequency. He showed that in diseases affecting the mechanical properties of the lung, there was a particular tidal volume and frequency for a given minute ventilation that resulted in minimal work, and this was the breathing pattern.

I was entranced. While I understood diseases of other systems, I totally lacked a cohesive framework to understand diseases of the respiratory system. Although I had been taught about complementary air and supplemental air, these terms were never talked about during my clinical years, and classification of lung diseases into obstructive and resistive abnormalities was still in the future. Finally, someone had constructed a framework in which I could begin to understand respiratory function in disease.

In retrospect, this lecture was to have an enormous influence on my future. It took some years before I chose to pursue the challenge of respirology, but there is no doubt that Christie’s lecture engendered my interest in this field.

When Christie arrived in 1955, there was already a strong infrastructure in place at the RVH. Peter Paré was a young internist who had specialized in respiratory medicine and who had recently joined the attending staff. Darrell “Dag” Munro was an outstanding thoracic surgeon, and Bob Fraser was a young star of the radiology department.

Christie brought Dr. David Bates with him. In 1956 and he appointed him director of the newly created respiratory division. Bates and Christie went on to do an extraordinary job of recruiting: Maurice McGregor and his wife Margaret Becklake, from South Africa; William “Whitey” Thurlbeck, another South African pathologist, who was on the staff of the Massachusetts General Hospital; and Joseph Milic-Emili, from the Harvard School of Public Health. Nick Anthonisen, who came from the United States for residency training, stayed and joined the faculty. Charlie Bryan came from the RCAF to do his PhD degree under Bates. All of these people were to become world leaders in their respective fields.

Bates and Christie wrote Respiratory Function in Disease, which became a medical best seller. The title is a tribute to Meakins and Davies, who wrote a book of the same name in the 1920s, of which I have a copy, a treasured gift from Dr. Christie when the Meakins-Christie Laboratories opened. David Bates and Maurice McGregor formed the joint cardio-respiratory service of the RVH and the Montreal Children’s Hospital (MCH). Margaret Becklake established excellence in respiratory epidemiology at McGill, a legacy that persists today and to which she is contributing as much as ever. Milic is world renowned for his contributions to respiratory physiology, particularly for his groundbreaking work on regional lung function using xenon 133 and his studies on the control of breathing. Thurlbeck established McGill as one of the leading centers of respiratory pathology and lung morphometry. Nick Anthonisen, a renowned physician, physiologist, and epidemiologist, went on to become dean of medicine at the University of Manitoba, and Charlie Bryan made many contributions to pediatric respirology, including the introduction of high-frequency oscillatory ventilation for the treatment of acute respiratory distress syndrome of infancy. Those who were already in place also made extraordinary contributions. Bob Fraser became the world’s leading pulmonary radiologist. Peter Paré was renowned for his excellence as a clinician and teacher. He has been responsible for inspiring and instilling clinical excellence in a vast number of respirologists in Canada and around the world. Fraser and Paré wrote Diagnosis of Diseases of the Chest, the book by which all other clinical texts of respiratory disease were judged. Dag Munro performed the world’s second lung transplant. It was a heady time.

David Bates deserves great credit for developing respiratory research at McGill in an inclusive multidisciplinary program including clinical, fundamental, and epidemiologic research in both the Royal Victoria and Montreal Children’s Hospitals and spanning the disciplines of respiratory medicine, pathology,
Laboratories were conceived. Work began. The egg was fertilized and the Meakins-Christie plans were sent to tender, the contract was awarded, and adjacent to Thurlbeck’s lung morphometry laboratory. The addition to the Pathological Institute, conveniently located tial setbacks, we scaled our plans and settled on a two-storey $600,000 to work with. After much discussion and some ini-

tap into federal resources to match those funds, so we had overhead costs for the first 10 years of operation.

build new laboratories for respiratory research and to provide companies. They agreed to donate $300,000 to McGill to Manufacturer’s Council, the consortium of Canadian tobacco This led to negotiations with the Canadian Tobacco smoking led to disease. Paul, a man of great integrity , agreed. the research of scientists who could investigate how research into the diseases it was causing, it should support
disease and that since it was incapable of undertaking research into the diseases it was causing, it should support the research of scientists who could investigate how smoking led to disease. Paul, a man of great integrity, agreed. This led to negotiations with the Canadian Tobacco Manufacturer’s Council, the consortium of Canadian tobacco companies. They agreed to donate $300,000 to McGill to build new laboratories for respiratory research and to provide overhead costs for the first 10 years of operation.

Today, this amount seems minuscule, but we were able to tap into federal resources to match those funds, so we had $600,000 to work with. After much discussion and some initial setbacks, we scaled our plans and settled on a two-storey addition to the Pathological Institute, conveniently located adjacent to Thurlbeck’s lung morphometry laboratory. The plans were sent to tender, the contract was awarded, and work began. The egg was fertilized and the Meakins-Christie Laboratories were conceived.

epidemiology, cardiology, and radiology. The joint cardiores-piratory service of the RVH and MCH rapidly became world famous. Respiratory research at McGill rivaled that of similar research centers at Harvard, Johns Hopkins, the State University of New York at Buffalo, the University of California, San Francisco, and elsewhere.

By 1962, following in Meakins’ footsteps, Christie had become dean of the McGill Faculty of Medicine. In 1967 he retired. Maurice McGregor replaced him as dean, and David Bates became chairman of the Department of Physiology. I was appointed director of the Respiratory Division at the RVH.

Almost as soon as I was appointed, Peter Paré, my lifelong friend and professional colleague, told me that his brother, Paul Paré, then a vice president of Imperial Tobacco, was going to be made president. He suggested that we approach Paul to support respiratory research at the RVH. Our pitch was that the tobacco industry was causing lung disease and that since it was incapable of undertaking research into the diseases it was causing, it should support the research of scientists who could investigate how smoking led to disease. Paul, a man of great integrity, agreed. This led to negotiations with the Canadian Tobacco Manufacturer’s Council, the consortium of Canadian tobacco companies. They agreed to donate $300,000 to McGill to build new laboratories for respiratory research and to provide overhead costs for the first 10 years of operation.

Today, this amount seems minuscule, but we were able to tap into federal resources to match those funds, so we had $600,000 to work with. After much discussion and some initial setbacks, we scaled our plans and settled on a two-storey addition to the Pathological Institute, conveniently located adjacent to Thurlbeck’s lung morphometry laboratory. The plans were sent to tender, the contract was awarded, and work began. The egg was fertilized and the Meakins-Christie Laboratories were conceived.

I had a pretty fair idea of how I wanted the laboratories to operate. I had spent an unforgettable year and a half with Jere Mead and Jim Whittenberger at the Harvard School of Public Health and had also spent time in Dick Reilly’s department at the Johns Hopkins School of Hygiene working with Don Proctor and Sol Permutt. The attitude in both institutions was identical and wonderful—that work should be fun. In both places much of the day was spent exploring, discussing, and dissection new ideas. The idea of change and innovation was not only welcomed, it was fostered. Almost daily, furious arguments (but neverquarrels) would break out, out of which spectaculatly stupid and, more than occasionally, spectacu-
larly brilliant ideas would emerge. And we had the academic freedom to pursue them. When I was in Boston, Jere Mead and I would drive to and from work every day. We would argue about the hot topic of the time and decide what we were going to play with that day. One such morning we were arguing hotly about the role of airway wall compliance in limiting expiratory flow, when Jere had an idea. He suggested that we push a catheter into the lung, push it right through the parenchyma and the visceral pleura, and then continue pulling it until the other end, which was widened into a bell shape, caught in a small airway. Then we could measure the pressure in small airways and partition the pressure drop and the resistance between central and peripheral airways. Such was the spirit of academic freedom in the laboratories that Jim Whittenberger directed, that we were able to start on this idea within half an hour, and within a week we had most of the methodologic problems solved.

This was science heaven. This was what I wanted for the Meakins-Christie Laboratories.

To achieve this, the laboratories were designed for procedures, not as individual private fiefdoms. There was a laboratory for animal mechanics, another for human mechanics, an exposure chamber, a gas exchange laboratory, and radioactive gas laboratories for both animals and humans. The sharing of laboratories, although it presented problems in scheduling and the setting up of equipment, promoted interactions among scientists with similar interests, which I hoped would stimulate new and exciting ideas. I was convinced that creative people interacting with other creative people with common interests would come up with more original ideas than they would conducting their science in isolation. One big room, the chief technician’s domain, had tables and chairs and always fresh coffee. Everyone—technicians, secretaries, research fellows, and research directors—was encouraged to eat lunch in that room. One day, I arrived late; every seat was taken, but a junior research fellow from France immediately stood up, and offered me his seat. One of the technicians piped up, “What are you doing that for?!” I was pleased. That was exactly the sort of atmosphere I had hoped to establish.

Large blackboards were put up in every room to encourage expression and discussion. The fellows’ offices were adjacent to the research directors’ offices. Doors were kept open, appointments unnecessary. Talking is one of the strongest stimuli to innovation. Thus, our weekly research seminar was the highlight of the week’s activities. In order to embolden shy research trainees to comment and ask
questions, beer was freely available to loosen their tongues. Although probably the research directors drank more than the trainees, this worked. The beer seminars were held in the evening and were open-ended. Many memorable ones went on past midnight. One visiting VIP said, “I’m told that here I won’t get past my first slide, so I’m going to start with my second.” This was a great compliment.

From the beginning, the laboratories were designed to be interdisciplinary, and physiologists, physicians, epidemiologists, pathologists, radiologists, and biomedical engineers were invited to participate. The laboratories were open in the sense that anyone who wanted to collaborate with one of the scientists working there was welcome to do so.

After a long gestation period, the Meakins-Christie Laboratories for Respiratory Research were born in August 1972. At the opening ceremonies we were tackled by the media about the propriety of accepting tainted tobacco money. When the reporters heard that the money was given carte blanche, with no strings attached, to investigate, among other things, how smoking damaged the lungs, this issue was resolved.

In creating the laboratories, we tried to make the concept that research should be fun, that secrecy was anti-innovative, and that free and open discussion was essential, the core of our philosophy. Judging from the list of distinguished scientists who have contributed to this book, I think we succeeded. I pay homage to some exceptional people with whom I collaborated, who were extraordinarily creative and who even after death command immense influence over their survivors. They stand as proof of the vitality of freedom, openness, and creativity in science. In particular, I am talking about Whitey Thurlbeck, Ann Woolcock, Harold Menkes, Fred Douglas, David Flenley, and Ludwig Engel. These people enriched my life extraordinarily and would have similarly enriched this book if they were still with us. During their time at McGill they promoted the vision of intellectual freedom and openness, so they deserve much credit for not only persistence of this vision in the Meakins-Christie Laboratories but also for promoting it in their own institutions. I cannot finish without pointing out that Jim Higg contributed hugely to the early years of the laboratories. He and Ann Woolcock were among my first research fellows. What a start that was!

I directed the Meakins-Christie Laboratories from 1972 until 1979, when I resigned to take up new challenges. The leadership of the Meakins-Christie Laboratories passed into the capable hands of Joseph Milic-Emili and then Jim Martin. It has continued to grow in size, influence, and contributions to new knowledge. Clearly, it is in wise and capable hands.

REFERENCES